
A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’S Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

, LA4JR -85-2830
.

(ww

TITLE Expert Systems for Design and Simulation

LA-UR--85-2838

DE85 017565

. . .

AuTHOMSI Jack Aldr.idqc!, John Ctirutti, Willard Draisin, and Michael Stcuerwalt

.-,
. . .: ~

SUBMITTEOTn AIJW/NASA Symlwsium on Automation,
*

Robotics and Advanced-~;’ ~’ ,.
L.omputinq for tllc National Sl)ace Proqram JQ , ,.

?

DISCLAIMER

Thk mpmlwmsprqmml asmrmccaumofwork spnrurmdbymrqcrwy oflhe(Jnilod!ilnta

Ckvwrnrnartl. Neitbrtk (Jnitd Stmta(~mmnl mrmny~my thd, ~rmny MtMr

cmplop, mmkmmry warrmrly, cxprwuor impliorf, or wu- tiny Iw@ Iidrilily or mspmsi.

billly fmtkw~, -@le~, muwful~d tiny lnftim*tti, s~mtum, product, or

~dimkd, or roprrts thd Its use would nol infringw priv~lolyowrmd riehls, Rafor-

erra homin 10 snv qmdfk amrrrwcid ~ucl, ~, or Ktw& by Imdw rmnw, Irdommk.

mmrufmcturwr, w olhemhc & nu naxswlly umslltule or :mply ill errdommm m, muwrv-

mcnrfaliom, ov fwori~ hy the United StHta Wvommeru w ●ry ~ncy thorwof. llm Vrnwm

d ophrlom of mrthcww cnpfd herein do no4 ncauarily ntmle or reflect Ih of the

Unilaf Stma (hvwmrncnl or ●y qancy Ihararf.

~~~~k)~~~ ksAlamos,NewMexic.8754~ ~
LosAlamos National Laborator

(+

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



2

EXPERT SYSTEMS FOR DESIGN AND HMULATION

Jack Aldridge,
John Cerutti,

Willard Draisin,

and

Michael Steuerwalt

Los Alamos National Laboratory
Los A.lames, NM 87545

Abstract

We discuss work in progress on two expert systems.
\Ve are developing systems that use artificial intelligence
techniques to simplify the use o? large simulation code9
and to help design complicated physical devices. The
simulation codes are used in analyzing and designing
weapons, and the devices are themselves parts of weapon
systems. 13ut we focus not only on the particular applica-
tions, bti’ also on the broader issues common to design
problcrns: large solution spaces and tentative reasoning.
We nlso discuss some practical difficulties encountered
during the project, one expert system provides an inter-
face between users and several simulation codes. It
checks input for errors, builds input files for the codes,
and submits jobs to a central computing facility. The
other expert system helps turn a description of a device

into a pnrticulnr design. Current!y this expert system
includes three major parts: a translator of descriptions
into designs, a graphics interface that presents the design
to the usrr and allows him to manipulate it, and a refiner
of designs. The latter is the “smartest” part of the sys-
t(’m, and the target of much of nur present efforts.

Introduction

The mnjor task of the Los Alnmos National Labora-
tory is the design of nu:lear weapons. This design prw
CPMrcquirm the us~ of large FORTRAN simulation codes
thnt run on the f~test supercomputern available. To a



3

large extent, design is an art that consumes great time of
both people and computers. Therefore we are construct-
ing two expert systems to simplify the use of the simulw
tion codes and to assist in the design of weapons. Both
systems described here are works in progress. This paper

should be viewed as an interim report.

Out of synch with their documentation, needing
input in particular forms that are hard to remember,
crashing for no discernible reason, big codes are often
hard to use. But they are necessary: they exploit the
capabilities of computers to do calculations that are oth-
erwise impossible, and so increaae our understanding and
guide our intuit ion about complicated phenomena. How-
ever. using computers raises problems. We must assimi-
late information we already have, choose what to com-
pute, describe the computation to the machine, interpret
the machine’s results, and combine the new information
with what we already know. Fig. 1 shows the environ-
ment in which users now run simulation codes at Los
Alamos. In these circumstances, the user beam the bur-
den of undmstnnding not only the relevant physics, say,
of his problem, but rk the inner details of the simula-
tion code and the computing system. Both expert sys-
tems that we describe here address a common long-range
gonl: mnking the computer a more adaptable, expressive,
amiable tool. Fig. 2 indicates the environment we aim
for I{erc inner detai!s of simulation codes are handled by
the controller expert! system, while the apprentice expert
systcm helps the user express a simulation in terms
nal’~roi to him rather than to the underlying computa-
tional drvicc. The apprentice also helps rcflnc the design,
set up a simulation, and interpret results.

Proton

Proton is an expert system that providw an interface
~)ctwmn uwrs and several simulation codes; it helps the
dmigner sl’t up and submit “production” calculations.
We run simulation codes interactively when the problcm
is small mough. 13ut large problems -- including most
dvsigns -- -require several houi~ of Crny time, and w) are
run in ‘production” modv. A production controller is a

control progrnm containing both input paramctws for a



4

simulation code and procedures to be followed by the
prod uction supervisor program to complete the computa-
tion or to preserve it should unforeseen difhculties arise.
Currently designers rely on three such production con-
trollers, each maintained by a different person. Proton
will replace these controllers, thus providing a uniform
user interface to the three codezI and simplifying mainte-
nance.

The expertise of Proton lies in its knowletlge of what
inputs are required for the weapons coclea, what ranges
and forms those parameters have, and what procedures
are followed by the production supervisor. This informa-
tion is gathered in databasea that are manipulated by
simple general control routines, a schema followed by
many well-known expert systems.

Proton works in three major phases:

(1) Jnterface: it creates an environment for interaction
with the user.

(2) Checker: it helps the user build input that describes
the simulation to the weapons code.

(3) Gencr~tor: it constructs a job control stream and
submits it for production,

The environment for the interaction includes such
fartors 3s the user’s name, accounting infmmation, la9t
progr; m used, and l~~t data tile used, More important
are t’ynrmic aspects, such as the disposition of output
and a choice of actions the system should take if some-
thing goes nwry, With this information, Proton allows a
user who is working on an extensive design problem to
conti.]’lc his eflorts without concern for these details, or
to start work by perturbing hls latest run. Proton helps
describe the simulation by checking the form and range
tlf input data for the simulation code. Such early detec-
tion of errors prevents the simulation code from crashing
In n proJuctiOn run, Finally, generation of a job control
stream and submittai are algorithmic tasks that ordinary
r(mtrollws perform, Mnn y of th~ snme con :cpts crmry
ov(*r to l)ro~on,”

For users, Proton ha.. two ndvantaga over standard
controllers: it provides R common interface to wwernl



s

simulation codes, and it detects input errors in parameter
names, values, subscripts, and formats. Of equal impor-
tance to us is an improvement that is unseen by users.
The Proton program uses a variety of information about
the inputs and expected behaviors of the simulation
codes. These data are stored in databaac+like files
sepr.rate irom the executable program itself. In principle,
then, we could add more target codes to ProCon simply

by extending the database, rather than by revising
Proton’s executable code. We have done this. ProCon
originally controlled a single simulation cod,. Exploiting
the data-d riven implementation of the checker, we added
a second target code by augmenting the database, and
arc adding others.

Just as the checker is implemented with data-driven
programming, so should the generator be. For instance,
different simulation codes expect data in different for-
mats. hloreover, big simulation codes last much Iouger
than big computers. During the life of the codes details
of production control procedures will change several
times. A generator written with data-driven techniques
need not bc rewritten to track these changes. Although
Proton’s generator is not yet data-driven, we expect to
make it so.

Friendly users rcccived the first version of Proccm on
v Vax in July. During the next year we plan to make
Proton operate in the production environment, to have
Cray-Vax communication, to add a third weapons code,
:tnd t.o enhance Proton’s crrm-checking abilities. Now
single partimetcrs are checked for errors; we arc exploring
wnys to dctrct and correct more subtle errors, such as
inconsistenci(w between parurneters or violation of con=
straints imposed by the context or order of parameters.

Difficulties

( )bviously, security constraints limit our choices of
~,[)ftwarc, hnrdwarc, and ways to connect them.
l~conomic foctors nlso bind: giving $100,000 Al machines
to rvcry dmigner is not a practicxl posc!bility, Most of
t)ur users work on Cray computers. 13ut there L9 no Lisp
vnvironmcnt oil the Crnys to support AI development.
For dovcloping our systems we chose a Vax 780 running



6

EIJNICE under VMS to emulate UNIX. We began with

Gordon Novak’s GLisp, exploiting its object-oriented pro-
gramming festures for database management. Because
our Computing Division was putting Portab!a Standard

Lisp (1’$L) on the Gay, we also favored GLisp for its
compatibility with PSL. But the PSL Flavors is consider-
ably more primitive than the MIT Lisp Machine version
available with Franz Lisp. We actually made a PSL ver-
sion of Proton for the Cray. However, this program has
not run because Cray PSL was not then a full implemen-
tation. Now we use Franz Lisp with the MIT macro
enhancements.

One major difhculty is that EUNICE does not sup-
port complctc input-output functions of UNIX This dis-
rupts the behavior of window systems, such as the
University of Maryland window system, that we had
planned to USC. Lack of a window facility severely res-
tricts the convenience of user interaction.

Another difficulty arises b~cause our intended audi-
ecice works on Gays and our system runs on a Va.x.
Designers are conservative. They prefer tools thau ‘bey
know work to tools that might be better but also might
fail. That Q Vax may haw n richer and m~re supportive
software environment than a Cray doesn’t outweigh the
inconvenience of learning a new operating system. They
don’t want to Icarn new operating systems; reasonably,
t hcy prrfer to Ie:lrn ncw physics. Con.~equently we need
to provicie access to Proton that doesn’t make desigr~ers
feel like they arc in alien territory. Until Proton runs on
the (“rnys, access means that the designer on ~ Cray cm
invoke pr(JCOn on a Vax without realizing that I)rocon
isn’t on the same machine where he is. This requires rcli-
ahlc and f,mst network communications. At present,
(“ruy-1’ax communication through the [ntegratcd Com-
puter Network at Los Almnos is not fnst or dependable
vnough for this application to suit the designers.

The dcsign~r’s apprentice

our second expert systcm, a sort of dewgner’s
npprcnticc, helps turn a description of a weapon into a
pnrticulnr design. i“he np’prontice is a direct attnck on
the problwn of intcgrnting numrric calculation with



7

symbolic computation. our goal is to permit the designer

to describe a design in terms natural to him. The
apprentice should convert the description into a design,
help him refine the design, recall related design problems,
invoke standard simulation codes, and ~~siat with param-
eter studies and interpretation of results. More precisely,
the apprentice is to meet the following goals.

(1) It will propose a design to meet a requirement based
on functio~d need. ‘i’he requirement may Le incom-
pletely specified and may impose implicit constraints
that the de’’igner may not care to specify. The

apprentice may propose a design by recalling a previ-
ous design, perturbing a prior design, or developing a
new design based on heuristics and simple calcula-
tions.

(2) The apprentice will allow users to communicate with
sophisticated simulation codes using language
appropriate to the design discipline, rather than the
syntax of a specific simulation code.

(3) It will provide a consistent interface to several simu-
lation codes.

~4) The apprentice will embody a corporate memory
both for designs and for design techniques, We
believe that the corporate memory is necessary if the
apprentice is to learn how to design better or if it is
to help Leach novice designers.

(5) It \vill help interpret the results of large-scale simula-
tions. This includes both winnowing for the desired
output nnd interpreting the output of one cod~ for
constructing input to another.

\Vc are writing code that implements three objec-
ti.:m. Iicre we discuss the schema upon which this cod-
ing is bascdo

“T’hcapprentice is n software system rather than an
i~ol:ttw] N code; thcrdore it has utility features to make
t ho Job easier for the dusigncr, as well as AI sections that
nttrmpt to capture ~xpert.isc. Fig. 3 illustrates schcmati-
c:dly the essential parts of the apprentice.

lrrput for the design is handled hy a menulike win-
dow th~t allows tho designer to imposo whatever



constraints he wants in whatever order he wants. When
he indicates that he is finished, the program proposes a
design based on designs that are known to work from
testing or from model calculations, including heuristics,
that can be done without the use of the powerful numeri-
cal simulators. (However, many of the heuristics are
derived from considerable experience with the large simu-
lators. ) The space of possible designs is big. Because
several design choices may be likely at a given stage,

heuristics play an important role in choosing an alterna-
tive.

An early requirement was that the interaction with
the designer be graphical, like CAD/C!AM techniques.
The apprentice presents its design to the user as a screen
picture. The drawing is dynamic: the designer can point
to a section and obtain information about it such aa size,

material, mass, and material properties via a pop-up ivin-
dow. Through the graphic interaction, he can add a new
scctiou to the design and add or change specific data.

We use object-oriented programming for this. Material
sections are objects whose attributes are parameters like

those d cscribcd above.

P “rhaps the most challenging problem offered by the
apprentice is the combination of inference with numerical
sir.~ulation. The chief inferences we wish to make are
that all constraints of the design are met or that no
design that meets all constraints is possible. A trivial
example of the latter is that a design that uses no nuclear

materials cannot produce nuclear yield. Several con-
straints on the design are dictated by external considera-

tions: the potential use, the space and mass available

from th~ delivery vehicle, and the current availability of
special materials, In addition, physical properties of
materials and gencrrd policy concerning nuclear weapons
impose other limits. The task of the designer is to create
a device meeting all these criteria.

That heuristics play a role in satisfying constraints
we have already mentioned. Yet heuristics are not
enough. Ikwause the constraints may be encountered in
different phases of the design process, violation of a con-
strrtint may not be discovered until late in the process.
The exp~rt system must be able to recover from the



discovery of the violaticm. It does this by backtracking
[1]. In backtracking, once a violation ia noted at any
level of the design, the system withdraws ita most recent
choice and selects another alternative. If there are no
unexplored alternatives at this level, then it goes further
back until an untried choice is found.

A ruh+based expert system does this backtracking.
A typical rule might be

IF the mass of the fissile material is too large
THEN the fissile masa haa been reduced
DO execute the miuw reduction rule set

Such a rule asserts that the procedure to reduce the masa
h~ been carried out. This “fact” can be used to trigger
other rules in the process, for example, to inform the sys-
tem that a procedure option (here, reduction of the maas]
ha already been tried and other options should be
chosen. In this way the form of the rule permits back-
tracking.

In practice such chronological backtracking, which
changes the most recently tried choice, may expend a lot
of effort altering irrelevant choices. Dependency-directed
backtracking withdraws the choices that matter; this is
far more efficient. Rules of the form above establish the
dependencies needed for directed backtracking.

Beyond its role in backtracking, this form of rule

serves a second purpose. The DO part of the rule allows
change of the parameters in a way that depends on the
particular violation and that isolates specific calculations
fmn the main control sequence. Because the DO can
e~ecu te any Lisp function, some rules will have directly
performed calculations by the time their conditions have
been met. Others may run additional rule sets or
separate “Subexperts, ” as the example dlustrates. Facts

may be =serted to control the path of execution by the
main expert system. This communication between expert

systems is like the blackboard scheme of HEARSAY-II
[2], By combining heuristics to guide choice with
cmperating expert systems to solve subproblems and
backtracking to resolve conflicts, we expect to cope with
the issues of large solution spaces and tentative re~~oning
characteristic of design.



10

Finally, theapprentice rnustgenerate data to drivea
numerical simulation. This is done using data-driven
techniques similar to those described above for Proccm.
One important difference is tha~ the apprentice must
translate from the objects that form the design to the
input parameters of the simulation code.

\Ve are still coding the apprentice. We have inter-
viewed our domain experts, prepared specifications for

the code, and developed dataflow diagrams. We have
fou~d a close correspondence between lnowledge
engineering” and well-known (but not widely enough used
in this area) techniques of structured analysis and design.
These techniques of software engineering [3, 4] have
proved widely useful for building more traditional com-
puter systems. In our work cm the apprentice, we have
been struck by their aptness not only for code develop-
ment but also for guiding us in acquiring and codifying
the knowledge of the domain experts.

References

[1] Patrick Henry Winston, Artificial Intelligence

~o~~nd edition),
Addison-Wesley, Reading, MA,

[2] Handbook of Artificial Intelligence, VOI1., pp. 343-
348. Avron Barr and Edward A. Feigenbaum, eds.
William Kaufmann, Inc., LOSAltos, CA, 1981.

[3] James Martin and Carma McClure, Diagraming
Technique8 [or Analyuta and J%grammera.
Prentice-Hall, Englewood Cliffs, NJ, 1085.

[4] Roger S. Fressman, Sojtware Engineering: A
Practitioner’a Approach. McGraw-Hill, New York,
lf182.



A
CONTROLLER

Fig. 1. Astandnrd simulation process.
The designer is in the !oop, modifying setups.

He must know internal details of the simulation cod=.



THE SIMUMTIOrN

T -Q

SIMULATION
CONTROLLER CODE OUTPUT

+
:--g

DESIGN
APPRENTICE KNOWLEDGE

BASE

Fig 2. A simulation process with intelligent interfs~m.
Expert systems cm cope with internal details of the simulation codes.

Also they can help scluct alternative designs, track choices, and interpret resu!ts,



TASK sPEC
DEPINER

$)USER INPUT
GENERATOR

h h

INFORMATION 01.!.!PUT SIMULATION
COLLECTOR PARSER

~
CODE

,.

Fig,3. Theapprentice interacts with s designer.
It helps seicct a design, refine it, run the simulation, and interpret results.



EXPERT SYSTEMS FOR DESIGN AND SIMULATION

Jack Aldridge, John Cerutti,
Willard Draisin, and Michael Steuerwalt

Los Alamos National Laboratory

85/9/5

AIAA/NASA Symposium on Automation,
Robotics and Advanced Computing

for thr National Space Program



EXPERT SYSTEMS CAN BE DEVELOPED
TO SUPPORT DESIGN AND SIMULATION

Objectives
Proton to control simulation codes
Some practical difficulties
Apprentice to help design weapons
Summary



CAN AI TECHNOLOGY HELP?

Do our present work better
- interpret between human expression and machine

instruction
- enhance symbol-manipulation ability and blend

with number-crunching

Do what is now impossible



STANDARD SIMULATION PUTS THE USER
IN THE LOOP

He mu~t know internal details of the simulation codes

PUSER



BIG SIMULATION CODES ARE
HARD TO UNDERSTAND

Simulation codes have
-100,000-200,000 lines of code
-500-2500 variables accessible to the user
- special capabilities for special circumstances

Documentation is usually inadequate
The code and its system environment keep changing
Users must communicate in the language of the code,

not the language of the problem



SMART INTERFACES COPE WITH
INTERNAL DETAILS

They can also help
- select alternative designs
- track choices
- interpret results

CWNT1{OLI.EH
EXPERT
SYSTNM



f

AI TECHNIQUES CA-N HELP CONTROL
SIMULATION CODES AND ASSIST IN DESIGN

Capture expertise
- rem ming aspects of design process
- kno ~ledge of the internals of the simulation

codes
- interpretation of results

Combine numeric and symbolic computation
Improve interfaces



WE ARE WORKING ON TOOLS TO HELP
CONTROL BIG CODES AND SIMPLIFY DESIGN

Proton: help set up and submit production jobs
Apprentice: help design simple nuclear weapons



EXPERT SYSTEMS CAN BE DEVELOPED
TO SUPPORT DESIGN AND SIMULATION

Objectives
Proton to control simulation codes
Some practical difficulties
Apprentice to help design weapons
Sumtnary



PROCON SHOULD MAKE
THE DESIGNER’S JOB EASIER

Help set up and submit “production” jobs
Stop jobs from aborting because of input errors
Be a uniform front end to many simulation codes



\, “
CONTROLLERS MONITOR AND MODIFY
THE COURSE OF A PRODUCTION RUN

Production runs of a simulation can be expensive
-2-100 hour runs, 5-50 files, $-400 Mbytes

We rely on 3 expert programs as controllers
3 FTEs maintain the controllers
C;hanges to production codes or the operating

environment require major modifications of the
controllers



FDCPERT PROGRAMS

- exhibit expert problem-solving behavior
- intertwine domain-specific knowledge with the code
- are hard to modify or use for a new problem
- are presently used to control simulation codes



EXPERT SYSTEMS

- exhibit expert problem-solving behavior
- comprise a base of information about a particular

problem domain, together with an inference
mechanism

- store domain knowledge (typically as rules) in a
database separate from the executable code

- can easily be modified and extended, by altering the
knowledge base

- become more expert in an incremental way



USE AI TECHNIQUES TO SOLVE THE PROBLEMS
OF CONTROLLER EXPERT PROGRAMS

- build an expert system to control production runs
- control decisions and heuristics appear explicitly in

a database
- easy, incremental extensions and modifications to

the controller are possible
- one controller can provide a common user interface



WE BUILT A CONTROLLER SYSTEM
THAT WORKS

Standard development cycle
- studied controllers used by designers
- picked a controller used by two design groups
- designed and implemented a first version on

vax/vMs
Proton has three main parts

- interface: creates an environment for the user
- checker: dots some error checks, helps user build

input dcsrribing the simulation
- generator: constructs job control stream and sub-

mits it for production
Cray version exists



PROCON HAS ADVANTAGES OVER STANDARD
CONTROLLERS

Provides a common interface to several simulation
codes

- fronts 2 simulation codes without rewriting exe-
cutable code

- adding a third design code
- detects input errors in parameter names, values,

subscripts, formats
LJSCSschema of isolating data from control

- easy to add new target codes, adapt to different
environments



PROCON WILL BECOME MORE CAPABLE

Generator improvements
- fully data-driven; adapt to different production

environ ments
Checker improvements

- check relations between input parameters
- check order of input

Database improvements
- full description of target codes
- provide aliasing of variables

Tutoring
- suggest to the user which simulation codes or

which options to use



EXPERT’ SYSTEMS CAN BE DEVELOPED
TO SUPPORT DESIGN AND SIMULATION

Objectives
Proton to control simulation codes
Some practical difficulties
Apprentice to help design weapons
Summary



LIFE IS NOT A BED OF ROSES

Security constraints limit hardware, software, connec-
tions

Hardware is hard
- AI machines are expensive, single-user, with

inadequate graphics or number-crunching power
- designers live on the Cra~s that run simulations
- high-resolution graphics on Tektronix 41xx
- high-speed communications between Crays,

Vaxcn, workstations
SOftwarc is also hard

- some (Jnix tools, nc VMl tools when wc started

- AI work st:~tiot] + high-ros color cost $90-I (}OK



,

THE ENVIRO WNT IS COMPLICATED

LM’I
LAM13DA+ VAX/VMS CRAY



GRAPHICS TERMINALS AND
Al WORKSTATIONS
FACILITATE DEVELOPMENT OF THE SYSTEMS

Graphics terminals give us the same interface to
design codes

- san~c keyboard-display interaction
- explore ways to recover and display simulation

results

AI workstations have the best development environ-
ment

- full Lisp environment: syntax-directed editor,
debugger, windows

- I(ELC and other commercial products
- explore coupling }mtwccn symbolic and numeric

computation

- sm:dl n]:whinm can bring th(~ npprmticc to t)hc
dcsignrr



THE APPRENTICE SHOULD MAKE
THE DESIGNER’S JOB EASIER

Turn descriptions into a design
Recall related design problems and refine the design
Call on standard production codes
Assist with parameter studies and interpret computa-

tional results
Incorporate special tools

Apply the power of the computer to the symbol-
manipulation work that designers do



STUDY HOW WEAPONS ARE DESIGNED

Identify the structure of the design process
Define needed catalogs of design information

- database of shots
- nominal designs and their performances
- characteristics of and relations between subsys-

tems
Uncover interplay between 1-D and 2-D simulations
Pick class of weapons to try
Outline design steps for the weapon



Swcfmcm
MASS

7

Jwt?osolt

COMPRESSED
SUPERCRITKAL

MASS

CHEMtCAL
Ewumw

(
-

BEFORE FIRING)
( IMMEDIATELY AFTER FIRING)

THEN EXPLODES

Iqyre 1.53. Principleof an implosion-typenuclear device.



●

A SIMPLE WEAPON IS AN FXCELLENT TESTBED
FOR AN EXPERT SYSTEM

Simple enough to be doable
Uncovers problems that will arise with more complex

weapons
Has been worked by an expert



THE APPRENTICE INTERACTS
WITH A IIESKN!ZR

. select a design
- refine it
- run the simulation code
- interpret results

k 9

TASK SPEC
9

EXPERT GRAPHIC
DEFI.NER

w
WINDOW SYSTEM

m
DESIGN

()USER I INPI ‘T
GENERATOR

I J

h 1 b ?
INFORMATION ~(lTp~-lT SIhflkATK)N

(’C!I.LEC’TC)R
- T

PARSER
~

conk;



THE APPRENTICE

Front end translates
design

INTERACTS ...

a description of a weapon into a

Graphics box presents the design to the user, lets him
manipulate it

Expert system helps refine the design
Setup-and-submit mechanism runs design codes
Collector recovers and displays results of design codes



THE APPRENTICE WILL GET SMARTER

Use special design codes to optimize designs
Address more complex weapons
Build a database of existing designs
Do parameter studies and interpret results
Run a sequence of several simulation codes



EXPERT SYSTEMS CAN BE DEVELOPED
TO SUPPORT DESIGN AND WMULATION

Objectives
Proton to control simulation codes
Some practical difficulties
Apprentice to help design wrapons
Summary



USING AI TECHNIQUES CAN HELP THE DESIGN
PROCESS

The techniques are being applied to two specific tools
AI suggests a framework for combining numerical and

symbolic computation
The apprentice can capture design decisions, stra-

tegies, and heuristics used now
An expert system controller can reduce the costs asso-

ciated with present production controllers


